2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) | 979-8-3503-2263-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICSE-COMPANION58688.2023.00037

2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

A Web-Based Tool for Using Storyboard of
Android Apps

Yuxin Zhang* Sen Chen** Lingling Fan®
College of Intelligence and Computing College of Intelligence and Computing College of Cyber Science
Tianjin University Tianjin University Nankai University
Tianjin, China Tianjin, China Tianjin, China
Abstract—The development team usually makes painstaking However, to achieve the above goals, developers or com-

efforts to review and analyze many existing apps with similar panjes need to download apps from the market and install
purposes such as competitive analysis, design recommendation,) oy mobile devices for manual exploration and recording,

code generation, and app testing. To assist different roles in
doing these tasks, in our prior work, two advanced approaches which may be ineffective. To this end, Chen et al. [8] pro-

(i.e., StoryDroid and StoryDistiller) have been proposed to posed a hybrid method called StoryDistiller, which combines
automatically generate the storyboards for Android apps with static and dynamic methods to extract the relatively complete
rich features such as UI pages, UI components, layout code, and activity transition graph (ATG) of apps more effectively. It
logic code. These approaches both aim at exploring and parsing shows a strong ability to extract app storyboards with rich

as many app pages as possible but lack some consideration of .
the presentation and interpretability of the results for different and useful features for different users. However, the lack

users such as PMs, designers, and developers. To improve of visual management also increases the difficulty for users
usability and scalability, this paper presents a web-based offline to understand the storyboards. Therefore, to make full use
tool, named StoryDroid+, which provides an operation-friendly of the value of the information extracted by these tools,
platform for using storyboards and helps different stakeholders we have built a web-based offline tool named StoryDroid-+

(e.g., designers, package managers, developers) explore and . .
understand apps from different perspectives through rich visual StoryDroid-+ can automatically extract the storyboards of the

pages. The tool and datasets are available at: https://github.com/ app and then visualize the pages of the results. In detail, as
tjusenchen/StoryDroid and the demonstration video can be found shown in Fig. 2, StoryDroid+ can visualize the page of the

at: https://youtu.be/prszxRdkdYU.)) results, including the basic storyboard features such as ATG

Index Terms—Storyboard, App exploration, GUI exploration, with UI pages and the corresponding code for developers

App review, Android app >, . ’

app competitive analysis for product managers (PMs) through

I. INTRODUCTION app comparison, and several useful searching functionalities

for designers including searching for similar Ul pages and

components.

In summary, we highlight the main functionalities of

StoryDroid+ as follows.

Nowadays, mobile applications (apps) are everywhere. In
just a few years, smartphones have become an indispens-
able part of our lives, helping us perform daily tasks, e.g.,
reading, shopping, banking, and chatting [1]. This has led to
the unprecedented growth of the app development business.
Today, companies, governments, and various organizations are
working hard to develop new and practical apps, hoping to
stay on users’ mobile devices. Competition among apps in
the same category is also growing. More than 3.8 million
Android apps and 2 million iOS apps are trying to attract users
in the two major mobile app markets, i.e., Google Play and
Apple App Store. However, there are still functional bugs [2]-
[4], security vulnerabilities [5]-[7], and a lack of marketing
competitiveness in mass mobile applications [8]. Therefore,
app developers and companies tend to conduct an extensive
competitive analysis of existing apps with similar functionality
through app reviews. This analysis helps to understand the
strengths and weaknesses of competitors and reduce market
risks before development, and it inspires developers with
innovative ideas for app design and implementation.

o App exploration module supports both batch or individual

exploration on the app exploration webpage.

Storyboard display module shows the rendered Ul pages

together with the ATGs are displayed to show the app sto-

ryboard, including the corresponding layout code, method
calls, and Java code of each activity.

Competitive analysis module supports the comparison of

any two or more app functionalities based on the extracted

app storyboards.

o Attribute searching module includes two sub-modules,
i.e., search for similar UI pages and components, which
can inspire designers to design more competitive Uls.

o App management module supports the management of the
analyzed samples, including the downloading of output
files, selection of multiple apps for competitive analysis,
and deleting the apps.

J:Corresponding author (senchen@tju.edu.cn)

979-8-3503-2263-7/23/$31.00 ©2023 IEEE 117
DOI 10.1109/ICSE-Companion58688.2023.00037
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:25:42 UTC from IEEE Xplore. Restrictions apply.

II. THE WEB-BASED TOOL

In this section, we first briefly introduce the back-end
techniques used in StoryDroid+-, and then detail the web-based
functionalities of StoryDroid+-.

A. Back-end Techniques in StoryDroid+

To extract the complete ATG and rich features of the app
as comprehensively as possible, StoryDroid+ integrates the
existing static and dynamic methods with reference to the
implementation of StoryDistiller [8]. As shown in Fig. 1,
three phases are designed as follows: (/) We first decompile
the APK as input, configure the AndroidManifest.xml file to
enable the third-party startup process, and repackage it to
generate a new installable APK file. (2) Static extraction
lays the foundation for the next stage of dynamic UI page
rendering, which mainly includes two steps: activity transition
graph (ATG) extraction and inter-component communication
(ICC) data extraction. Since the activity transition in fragments
and inner classes is representative and widely used in real-
world apps, we consider them to construct the static ATG by
analyzing their associations with components. To successfully
start an activity, the data required to render the target UI page
should be provided, so it is also crucial to obtain the ICC
data. For each activity, we obtain the parameters needed to
start it (including primitive attributes and extra parameters).
For primitive attributes such as “action” and “category”, we
obtain them by parsing the corresponding fields in the manifest
file or by extracting them in the Java code. As for the extra
parameter extraction, we first determine the methods related to
the activity life cycle and then analyze them successively based
on the relation between the additional parameters in these
methods and page rendering. (3) Dynamic Ul page rendering
mainly includes two steps: Ul page rendering, which uses the
extracted ICC data, and the Android toolkit to launch and
start activities dynamically; UI component exploration, which
identifies activity transitions and UI pages by exploring all
interactive components of each activity, so as to enhance the
static ATG. By using the mixed ATG construction method,
we can obtain a more complete ATG with the corresponding
rendered UI pages, together with other rich features such as
layout codes, call graphs, and screenshots of Ul components.

B. Web-based Offline Platform

By integrating the methods used by existing static and
dynamic tools for storyboard generation, StoryDroid+ finally
extracts a relatively complete ATG and much rich feature
information related to apps. For example, in the process of
dynamic UI page rendering, we can obtain ATG, UI page,
activity name, and call graph in turn. For the activity code,
we use the reverse engineering tool Jadx [9] to decompile the
APK file and extract the corresponding Java code. Besides,
we obtain the layout code by storing the current activity
layout when rendering the UI pages. In addition, we can also
obtain other properties of the Ul components from their layout
code to enrich the final presentation. However, obtaining such
information does not mean that users can fully understand

118

it. If this information cannot be displayed in an appropriate
form, it would greatly weaken its value and make it difficult
for users to understand. To this end, we set up an offline web
platform composed by user-friendly operation and a storyboard
to better tell the app. We linked the app information obtained
by StoryDroid+ in a visual form to help users explore the app
from a deeper level. The implementation of StoryDroid+ on
the offline web platform mainly includes six function modules:

® App exploration module. StoryDroid+ provides users
with an operation-friendly webpage that allows them to upload
one or multiple apks for analysis (O App exploration module
shown in Fig. 2). After uploading, StoryDroid+ will use the
hybrid method described above to explore the uploaded apk(s)
and parse various features such as ATG, Ul pages, and layout
code. When the number of uploaded apk(s) is more than one,
the exploration results will be displayed in comparison, which
allows users to directly see the differences between apps.

® Storyboard display module. To clearly show the results
of exploration to users, we will display all the features parsed
on the webpage. First, we use the component Network [10] (a
visual network composed of nodes and edges) to draw ATG,
which is implemented based on the dynamic visualization
library vis.js. As shown in Fig. 2 (@ Storyboard display
module for developers), we use the rendered screenshots of Ul
pages and names of the activities as nodes and use “edge” to
describe the transition relations between UI pages. Displaying
ATG in the form of a visual network can not only enable
users to understand the presentation of real Ul pages but also
show the relation and navigation between app UI pages more
clearly. Users can also get the trigger mechanism between each
function module while knowing more about the functions of
the app. This is equivalent to the process of disassembling
the entire app and reassembling it for users. In addition, we
also associate the method call graph, activity code, and layout
code of each activity with the activity, so that users such as app
developers can better understand the specific implementation
of each activity. The “Package Name”, “Package Version”,
“Activity Number”, and other relevant attributes about the app
are also clearly visible on the same webpage. To facilitate
users to quickly find the target activity, StoryDroid+ has a
query function on this page (“Search (activity name)”). Users
can quickly locate and view the activity’s method call graph,
activity code, layout code, and other useful information by
entering keywords.

® Competitive analysis module. In order to facilitate users
such as PMs comparing different apps (such as conducting
competitive analysis), StoryDroid+ supports users selecting
two apps they are interested in for visual display (the search
function can also be used to retrieve similar apps). As shown
in Fig. 2 (® Competitive analysis module for PMs), users
can visually see the storyboards of the two apps, and all
information related to the two apps can be found directly
on the visualization page. Users can also use the search bar
to quickly locate activities with the same name in these two
apps. Through these functions, users can conduct competitive
analysis on existing apps with similar functionality, understand

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:25:42 UTC from IEEE Xplore. Restrictions apply.

Offline Webpage
Static Extraction i
APK : Additional Features
Instrumentation ATG Layout code Activity code welcome t.o
Upload StoryDroid+
ﬂ. l L ICC data ATG with Ul Activity name - Call graph Please upload the APK to be scanned and click the
pages
+ Ul component
-
Dynamic Ul = N
Instrumented Page Rendering omponent text and size
APK

Fig. 1. The back-end techniques used in StoryDroid—+.

@ App exploration module

welcome to

StoryDroid+

Please upload the APK to be scanned and click the
button to start analysis.

Drop files here to upload

Search
IS Activity

@Attribute searching module (Ul pages) for designers

(®Attribute searching module (Ul components) for designers

id-

Fig. 2. Main function modules of the web-based offline tool of StoryDroid+.

the strengths and weaknesses of competitors in advance, and
reduce market risks before development. This module offers a
thorough competitive analysis that PM urgently needs.

@ Attribute searching module. To facilitate users, such as
designers, in viewing similar activities and Ul components,
we classify apps analyzed by users according to the semantic
names of activities and establish a database of activities with
similar functions. As shown in Fig. 2 (@ Attribute searching
module (UI pages) for designers), we also visualize this
function to facilitate users to query and view the UlI, activity
code, and layout code of similar activities. This can not only
help UI/UX designers get inspiration from similar app designs
but also help developers who want to get inspiration from
similar apps link the UI screen with the corresponding real
code. In addition, in the same way, we split and classify the
components on the Ul pages according to the component type
and the semantic information of their activities. In Fig. 2 (®
Attribute searching module (UI components) for designers),
users can learn about the design style of a specific type of
component in similar activities to get references.

® App management module. As shown in Fig. 2 (®
App management), to facilitate subsequent viewing and use,
StoryDroid+ builds a local database to store the results of apps
that have been analyzed and allows users to manage these apps
on the “Recent Scans” page, including deleting, viewing, etc.

119

In the meantime, we also log the statistical data from over ten
dimensions, which can be generated and directly downloaded
from the webpage.

III. EVALUATION

StoryDroid+ integrated the back-end techniques proposed
by StoryDistiller, therefore, the effectiveness of the storyboard
extraction has been thoroughly evaluated in our previous
work [8]. We randomly selected 75 open-source apps and
75 closed-source apps as test sets and then compare with
three existing dynamic and static ATG exploration tools, i.e.,
IC3 [11], Gator [12], and Stoat [13], to evaluate the effective-
ness of StoryDroid+. The number of activity transfer pairs
and activity coverage are used to demonstrate the performance
of each tool. The back-end extraction technique can obtain a
more complete activity transition graph with real Ul pages
for both open-source and closed-source apps. Specifically, in
the aspect of activity transition pairs, StoryDroid+ is better
than static method IC3 [11] and Gator [12] (the average
value of StoryDroid+ is 23.3, while IC3 is 7.8, and Gator
is 10.0). In terms of activity coverage, it is also better than
the dynamic method Stoat [13] (77.5% for StoryDroid+ and
36.3% for Stoat). In comparison with the static method,
the performance trend of the activity coverage is similar to
that of the activity transition pairs, and StoryDroid+ still

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:25:42 UTC from IEEE Xplore. Restrictions apply.

[l IC3 [Gator [StoryDroid+ M Stoat [IC3 [Gator

1.
e MR

Fig. 3. Comparison of transition pairs and Activity coverage.

StoryDroid+

Activity Coverage

Transition pairs

outperforms other tools. For the evaluation of the web-based
offline platform, we manually uploaded the aforementioned
150 apps and demonstrated StoryDroid+ can work smoothly
for different users in practice.

IV. APPLICATIONS BASED ON STORYDROID+

StoryDroid+ effectively makes up for the shortcomings of
existing ATG construction tools, makes app exploration more
comprehensive and complete, and depicts the storyboard of
apps more vividly through the operation-friendly visual pages,
which can help different stakeholders explore and understand
apps from different perspectives.

A. UI/UX Designer

The success of app design depends on the user experience
(UX) and user interface (UI). Poorly designed apps would be
difficult to be widely accepted and probably lose attraction to
potential customers. StoryDroid+ allows designers to explore
a large number of apps when designing apps, and learn from
the same category of apps or from the activities of the same
function of different apps to find inspiration. StoryDroid+ can
present a large number of different UI pages to users, which
are almost the same as the real Ul pages that users will see. In
addition, to learning the overall design of UI pages, designers
can also learn about the design trend of Ul components in a
certain type of app through our tools, such as the style, color,
and size of buttons.

B. App Developers

StoryDroid+ provides users with ATG with many features
(e.g., layout code, activity code, method call graph) and links
these features with the corresponding UI screens. Therefore,
in the implementation of UI, developers can quickly and accu-
rately obtain the corresponding layout code by searching for
similar UI and customize the Ul code according to their own
purposes to achieve the given Ul design. In the implementation
of the functions of apps of the same category, in order to have a
competitive advantage, apps of the same category will contain
more common functions. Therefore, activities with the same
semantic name are likely to have similar logic and architecture.
Through our tools, developers can refer to activity codes with
the same name to help improve the quality of their apps and
customize more interesting functions on this basis.

120

C. App Testers

For app testing, it is necessary to ensure that all important
scenarios are covered as much as possible, to avoid service
failure caused by untested functions. The relatively complete
ATG built by StoryDroid+ can help testers explore more ac-
tivities and improve test coverage. In the storyboard visualized
by StoryDroid+, users can see the navigation relationship
between different UI pages and the relatively complete Ul page
composition of each activity, which can effectively avoid the
problem of incomplete testing by testers due to the possible
complexity of the app. In addition, StoryDroid+ can help
guide the regression testing of apps by identifying the modified
ATG and Ul components. StoryDroid+ stores the mapping
relationship between the UI page and the corresponding layout
code and activity code. Testers can compare the differences
between different versions of layout code to identify the
modified Ul components or functions, and update test cases
accordingly, rather than designing test cases from scratch,
which improves the reusability of test cases and reduces the
workload of testers.

V. RELATED WORK

Static GUI exploration (e.g., Gator [12], StoryDroid [1],
GoalExplorer [14]) and ICC resolution (e.g., IC3 [11], and
ICCBot [15]) are all important way of app abstraction and
GUI modeling, however, the completeness of ATGs is limited
by the static analysis techniques. They only provided a graph
structure of the UI transitions without the rendered UI pages.

A large number of dynamic GUI testing tools (e.g., Mon-
key [16], A3E [17], Sapienz [18], Stoat [13]) have been
exhibited, however, the pure dynamic testing approach is
limited by the low activity coverage, which significantly limits
the completeness of ATGs.

Compared with these related works, StoryDroid+- optimizes
the original tool on ATG construction and UI page rendering
by combining the original static method and novel dynamic
exploration. Last but not least, StoryDroid+ further provides
an operation-friendly web platform for using storyboards and
help different stakeholders.

VI. CONCLUSION

In this paper, we proposed a web-based offline tool named
StoryDroid+. By integrating the existing static and dynamic
ATG exploration methods, StoryDroid+ can obtain a relatively
complete storyboard of apps with rich features. On this basis,
StoryDroid+ is designed in a user-friendly way, which can
not only make it easier for users to operate but also visualize
the storyboard of the app and help different stakeholders
explore and understand the app. Compared with the existing
tools, StoryDroid+ has better performance and significantly
improved efficiency for app review and app understanding.

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural
Science Foundation of China (No. 62102197, 62102284).

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:25:42 UTC from IEEE Xplore. Restrictions apply.

[1]

[3]

[8]

REFERENCES

S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu, “Sto-
rydroid: Automated generation of storyboard for Android apps,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 596-607.

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in Android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 486-497.

L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in Android apps,” in
Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 408—419.

S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu, “Accessible
or not? an empirical investigation of Android app accessibility,” IEEE
Transactions on Software Engineering, vol. 48, no. 10, pp. 3954-3968,
2021.

S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu,
“An empirical assessment of security risks of global Android banking
apps,” in Proceedings of the 42nd International Conference on Software
Engineering. 1EEE Press, 2020, pp. 596-607.

S. Chen, Y. Zhang, L. Fan, J. Li, and Y. Liu, “Ausera: Automated
security vulnerability detection for Android apps,” in 37th IEEE/ACM
International Conference on Automated Software Engineering, 2022, pp.
1-5.

S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu, “Are
mobile banking apps secure? what can be improved?” in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 797-802.

S. Chen, L. Fan, C. Chen, and Y. Liu, “Automatically distilling sto-

121

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

ryboard with rich features for Android apps,” IEEE Transactions on
Software Engineering, 2022.

(2018) Dex to Java decompiler. [Online]. Available: https://github.com/
skylot/jadx

(2022) vis.js Network.
vis-network/docs/network/
D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite
constant propagation: Application to Android inter-component commu-
nication analysis,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 1. 1EEE Press, 2015, pp. 77-88.

S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, and
A. Rountev, “Static window transition graphs for Android,” Automated
Software Engineering, vol. 25, no. 4, pp. 833-873, 2018.

T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017.

D. Lai and J. Rubin, “Goal-driven exploration for Android applications,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 1EEE, 2019, pp. 115-127.

J. Yan, S. Zhang, Y. Liu, J. Yan, and J. Zhang, “Iccbot: fragment-
aware and context-sensitive icc resolution for Android applications,”
in Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings, 2022, pp. 105-109.
(2018) Google Monkey for Testing. [Online]. Available: https:
//developer.android.com/studio/test/monkey

T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Acm Sigplan Notices, vol. 48,
no. 10. ACM, 2013, pp. 641-660.

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proceedings of the 25th interna-
tional symposium on software testing and analysis, 2016, pp. 94-105.

[Online]. Available: https://visjs.github.io/

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:25:42 UTC from IEEE Xplore. Restrictions apply.

